Copied to
clipboard

G = C2×C32⋊Dic5order 360 = 23·32·5

Direct product of C2 and C32⋊Dic5

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C32⋊Dic5, (C3×C6)⋊Dic5, (C3×C30)⋊6C4, C3⋊S32Dic5, C3⋊S3.5D10, C102(C32⋊C4), C321(C2×Dic5), C54(C2×C32⋊C4), (C5×C3⋊S3)⋊8C4, (C3×C15)⋊12(C2×C4), (C2×C3⋊S3).2D5, (C10×C3⋊S3).5C2, (C5×C3⋊S3).8C22, SmallGroup(360,149)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C2×C32⋊Dic5
C1C5C3×C15C5×C3⋊S3C32⋊Dic5 — C2×C32⋊Dic5
C3×C15 — C2×C32⋊Dic5
C1C2

Generators and relations for C2×C32⋊Dic5
 G = < a,b,c,d,e | a2=b3=c3=d10=1, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, ebe-1=bc-1, dcd-1=c-1, ece-1=b-1c-1, ede-1=d-1 >

9C2
9C2
2C3
2C3
9C22
45C4
45C4
2C6
2C6
6S3
6S3
6S3
6S3
9C10
9C10
2C15
2C15
45C2×C4
6D6
6D6
9Dic5
9C2×C10
9Dic5
2C30
2C30
6C5×S3
6C5×S3
6C5×S3
6C5×S3
5C32⋊C4
5C32⋊C4
9C2×Dic5
6S3×C10
6S3×C10
5C2×C32⋊C4

Smallest permutation representation of C2×C32⋊Dic5
On 60 points
Generators in S60
(1 6)(2 7)(3 8)(4 9)(5 10)(11 18)(12 19)(13 20)(14 16)(15 17)(21 58)(22 59)(23 60)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 49)(32 50)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 40 35)(2 36 31)(3 32 37)(4 38 33)(5 34 39)(6 48 43)(7 44 49)(8 50 45)(9 46 41)(10 42 47)(11 55 60)(12 51 56)(13 57 52)(14 53 58)(15 59 54)(16 26 21)(17 22 27)(18 28 23)(19 24 29)(20 30 25)
(1 35 40)(2 31 36)(3 37 32)(4 33 38)(5 39 34)(6 43 48)(7 49 44)(8 45 50)(9 41 46)(10 47 42)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 13)(7 12)(8 11)(9 15)(10 14)(21 39 26 34)(22 38 27 33)(23 37 28 32)(24 36 29 31)(25 35 30 40)(41 59 46 54)(42 58 47 53)(43 57 48 52)(44 56 49 51)(45 55 50 60)

G:=sub<Sym(60)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,18)(12,19)(13,20)(14,16)(15,17)(21,58)(22,59)(23,60)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,49)(32,50)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,40,35)(2,36,31)(3,32,37)(4,38,33)(5,34,39)(6,48,43)(7,44,49)(8,50,45)(9,46,41)(10,42,47)(11,55,60)(12,51,56)(13,57,52)(14,53,58)(15,59,54)(16,26,21)(17,22,27)(18,28,23)(19,24,29)(20,30,25), (1,35,40)(2,31,36)(3,37,32)(4,33,38)(5,39,34)(6,43,48)(7,49,44)(8,45,50)(9,41,46)(10,47,42), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,13)(7,12)(8,11)(9,15)(10,14)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)(41,59,46,54)(42,58,47,53)(43,57,48,52)(44,56,49,51)(45,55,50,60)>;

G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,18)(12,19)(13,20)(14,16)(15,17)(21,58)(22,59)(23,60)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,49)(32,50)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,40,35)(2,36,31)(3,32,37)(4,38,33)(5,34,39)(6,48,43)(7,44,49)(8,50,45)(9,46,41)(10,42,47)(11,55,60)(12,51,56)(13,57,52)(14,53,58)(15,59,54)(16,26,21)(17,22,27)(18,28,23)(19,24,29)(20,30,25), (1,35,40)(2,31,36)(3,37,32)(4,33,38)(5,39,34)(6,43,48)(7,49,44)(8,45,50)(9,41,46)(10,47,42), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,13)(7,12)(8,11)(9,15)(10,14)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)(41,59,46,54)(42,58,47,53)(43,57,48,52)(44,56,49,51)(45,55,50,60) );

G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,18),(12,19),(13,20),(14,16),(15,17),(21,58),(22,59),(23,60),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,49),(32,50),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,40,35),(2,36,31),(3,32,37),(4,38,33),(5,34,39),(6,48,43),(7,44,49),(8,50,45),(9,46,41),(10,42,47),(11,55,60),(12,51,56),(13,57,52),(14,53,58),(15,59,54),(16,26,21),(17,22,27),(18,28,23),(19,24,29),(20,30,25)], [(1,35,40),(2,31,36),(3,37,32),(4,33,38),(5,39,34),(6,43,48),(7,49,44),(8,45,50),(9,41,46),(10,47,42)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,13),(7,12),(8,11),(9,15),(10,14),(21,39,26,34),(22,38,27,33),(23,37,28,32),(24,36,29,31),(25,35,30,40),(41,59,46,54),(42,58,47,53),(43,57,48,52),(44,56,49,51),(45,55,50,60)]])

36 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D5A5B6A6B10A10B10C10D10E10F15A···15H30A···30H
order1222334444556610101010101015···1530···30
size11994445454545224422181818184···44···4

36 irreducible representations

dim1111122224444
type++++-+-++
imageC1C2C2C4C4D5Dic5D10Dic5C32⋊C4C2×C32⋊C4C32⋊Dic5C2×C32⋊Dic5
kernelC2×C32⋊Dic5C32⋊Dic5C10×C3⋊S3C5×C3⋊S3C3×C30C2×C3⋊S3C3⋊S3C3⋊S3C3×C6C10C5C2C1
# reps1212222222288

Matrix representation of C2×C32⋊Dic5 in GL6(𝔽61)

6000000
0600000
001000
000100
000010
000001
,
100000
010000
000100
00606000
00006060
000010
,
100000
010000
001000
000100
000001
00006060
,
010000
60180000
0058000
003300
0000200
00004141
,
0110000
1100000
000010
000001
001000
00606000

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,1,60,0,0,0,0,0,0,60,1,0,0,0,0,60,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,1,60],[0,60,0,0,0,0,1,18,0,0,0,0,0,0,58,3,0,0,0,0,0,3,0,0,0,0,0,0,20,41,0,0,0,0,0,41],[0,11,0,0,0,0,11,0,0,0,0,0,0,0,0,0,1,60,0,0,0,0,0,60,0,0,1,0,0,0,0,0,0,1,0,0] >;

C2×C32⋊Dic5 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes {\rm Dic}_5
% in TeX

G:=Group("C2xC3^2:Dic5");
// GroupNames label

G:=SmallGroup(360,149);
// by ID

G=gap.SmallGroup(360,149);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,3,-5,24,963,111,964,376,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^10=1,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,e*b*e^-1=b*c^-1,d*c*d^-1=c^-1,e*c*e^-1=b^-1*c^-1,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C2×C32⋊Dic5 in TeX

׿
×
𝔽